Evidence of a Cationic Substitution Domain in Lithium-Manganese Spinels

C. B. Azzoni, M. C. Mozzati, A. Paleari^a, V. Massarotti^b, M. Bini^b, and D. Capsoni^b INFM-Department of Physics "A. Volta" of the University, via Bassi 6, I-27100 Pavia ^a INFM-Department of Materials Science of the University, via Cozzi 53, I-20126 Milano ^b Department of Physical Chemistry of the University and CSTE-CNR, via Taramelli 16, I-27100 Pavia

Z. Naturforsch. **53 a,** 771–778 (1998); received June 22, 1998

Magnetic susceptibility measurements and electron paramagnetic resonance spectra of samples prepared from the reactive system MnO/Li₂CO₃ with different starting Li cationic fraction x are analyzed, taking into account the structural and compositional information provided by x-ray diffraction. Parent phases, as Mn₂O₃, Mn₃O₄ and Li₂MnO₃, arise together with the lithium-manganese spinel as a result of Li-deficiency or Li-excess with respect to the x=0.33 composition pertinent to the stoichiometric LiMn₂O₄ spinel. The data show that the spinel phase can sustain a partial Li-Mn substitution in the cation sites, according to compositional models described, for x>0.33, by Li_{1+y}Mn²⁺_{1-3y}Mn⁴⁺_{1-3y}Mn⁴⁺_{1-1y}O₄ (Li-rich spinel) and, for x<0.33, by Li_{1-|y|}Mn²⁺_{1-|y|}Mn³⁺_{1-|y|}Mn⁴⁺_{1-|y|}O₄ (Li-poor spinel). Paramagnetic resonance data of the Li-poor spinel phase are analyzed to discuss the possible oxidation state of Mn in the tetrahedral site.

Key words: Stoichiometric LiMn₂O₄ Spinel Phase, Magnetic Susceptibility, Electron Paramagnetic Resonance.

Reprint requests to V. Massarotti; Fax: +39 382 507575, E-mail: vimas@chifis.unipv.it